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On the S" = 0 excited states of an anisotropic Heisenberg 
chain 
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Received 17 August 1981, in final form 1 April 1982 

Abstract. The S' = 0 excited states of the anisotropic antiferromagnetic Heisenberg 
Hamiltonian 

N 

are studied when O s p  s 1. The original set of secular equations is reduced to a simpler 
one, which contains the parameters of excitations only. The energy-momentum dispersion 
is also found. It is shown that the typical low-lying excitations are either two-strings or 
not of string form. The simplest excitations are described in more detail. 

1. Introduction 

The study of exactly soluble models, like the 1D anisotropic Heisenberg model, has 
two-fold interest. First, such models provide non-trivial examples for interacting 
many-body systems, and this is in itself of great interest. The second point is, that 
although these models are very much simplified ones, their solutions can serve as 
checks for approximate methods used to solve more complicated but more realistic 
models. 

In this work we study the low-energy excited states of the anisotropic Heisenberg 
Hamiltonian 

where the spin operator with components Si", S;  and Sf corresponds to an S = 3 spin 
associated with the site j ,  and the problem is uniquely defined by the periodic boundary 
condition SN+I = SI. 

The study of this Hamiltonian started a long time ago. The isotropic problem 
(p = 1) has already been investigated by Bethe (1931) and Hulten (1938). In particular 
Bethe could give a classification of the eigenstates of the isotropic Hamiltonian, and 
showed that finding the eigenvalues and eigenstates is equivalent to solving a set of 
coupled nonlinear equations. Orbach (1959) extended Bethe's treatment to the 
anisotropic case, and des Cloizeaux and Gaudin (1966) studied the ground state and 
the spin-wave states for all values of p. A strict mathematical proof of the uniqueness 
of the ground states for all values of p can be found in the papers by Yang and Yang 
(1966a, b, c) and the references for the T = 0 magnetic properties of the model are 
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Griffiths (1964) and Yang and Yang (1966a, b, c). The lowest-energy excited states 
have been described by Johnson et a1 (1973). The thermodynamical properties of 
the model, following the work of Takahashi and Suzuki (1972), have been studied by 
Fowler and Zotos (1981, 1982) and Zotos and Fowler (1982). 

Most of the work dealing with the 1D Heisenberg and related models has been 
based on some assumptions concerning the nature of the excited states. Our aim is 
to study these excited states, especially the S’ = 0 ones in the regime 0 c p  < 1. After 
introducing the general formalism (9  2) in 9 3 we reduce the original set of secular 
equations to a simpler system which contains the parilmeters of the excitations only. 
In 9 4 the solutions of these equations for the two simplest cases are found. 

2. Basic equations, the ground state, and notation 

2.1. The basic equations 

As is well known (Orbach 1959, des Cloizeaux and Gaudin 1966) according to Bethe’s 
hypothesis, the S‘ = N/2-r  (r <N/2)  eigenstates of (1.1) are given in the form 

In>= C a(nl ,nZ, .  . . , nr)Si,Si, .  . . S,IF) (2.1) 
n ,  < ?I,<. ..< n, 

where Si= flips down the spin at the site nu, IF) is the ferromagnetic state with all 
spins pointing upwards, and the coefficients a (n l ,  nz, . . . , nr) are 

Here ( P l ,  P 2 , .  . . , P a , .  . . , Pr) is a permutation of the numbers (1, 2 , .  . . , a , .  . . , r) 
and the summation is extended over all permutations. Indeed, the state (2.1) with 
(2.2) represents an eigenstate of (1.1) with an energy measured from the energy of 
the state IF) 

r 

E =  (cosk,-p) 
a = l  

if 

cot( ku/2) - ~0t(kp/2) 
(1-p) cot(ka/2) cot(kp/2)-(l+p)’ COf(Jl,p/2) = -p 

(2.3) 

(2.4) 

Equation (2.4) together with the equations expressing the periodic boundary condition 

Nk, = 27Aa + Iljap 
B Z a  

(2.5) 

where all A, are integers are the equations to be solved for the complete description 
of the state classified by the quantum numbers Al, A*, . . . , A?, 

To make the system (2.4)-(2.5) simpler, auxiliary variables are introduced: in our 
case (0 s p < 1) the substitution (des Cloizeaux and Gaudin 1966) 

p = c o s 0  (0 < 0 c 7/2)  cot(ka/2) = cot(0/2) tanh(~, /2)  (2.6) 

is suitable. After this substitution Jlup depends on the difference qu - T~ only and 
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equations (2.4)-(2.5) can be written in the form 

2 N  tan-'(cot(0/2) tanh 77,/2) = 2 ~ 9 ,  + 'E 2 tan-'[cot 0 tanh(q, -778)/2]. (2.7) 

Here the 9, are integers if N-r is odd and half odd-integers if N-r is even 
(9, - (N - r - 1)/2 = integer). The energy of the state expressed in terms of these new 
variables is 

r 

p = 1  

and the momentum is 
r 2T 

p =  k,=-- c 9 , + r T .  
a=l  N a=' (2.9) 

2.2. The ground state 

The ground state belongs to the S' = 0 subspace if N is even and to the S' = 4 if N 
is odd. For the sake of simplicity we shall suppose that N is even. Then in order to 
describe the ground state one has to choose the 9, set (des Cloizeaux and Gaudin 
1966) as 

9, = -1 2(N/2 + 1 - 2a) a = 1 , 2 , ,  . . , N/2. (2.10) 

(This choice implies the conventions 0 < k, < 27r, -T < $ap < T, - ~ / 2  < tan-' x < 

With these quantum numbers all k, (77,) are real, and in the large N limit their 
d 2 . 1  

density ao(q) (the number of 77, in the interval (77; q +dq) is N d q )  d7) is 

a O ( 7 7 )  = [40 cosh(q~/20)]-'. (2.1 1) 

The ground-state energy is 

Eo = -N sin 0 lom ( 1 - tanh(oO)) dw. 
tanh(w?r) 

(2.12) 

2.3. Extension to complex q 

It is interesting to note that in the ground state all k, fall into the region (0; 2~ - 0). 
It is very probable that the ground state is the only S' = 0 state in which for all k, 

Imk,=O 0 < k, < 2 ~  - 0. (2.13) 

An argument supporting this is that in the planar limit ( p  = 0 , 0  = ~ / 2 )  the only S' = 0 
state in which all k satisfy (2.13) is the ground state, thus supposing continuity in 0 
one has to assume that in the excited states, (2.13) does not hold for all k,. 

Since (2.6) defines real q for k satisfying (2.13) only, (2.6) must also be extended 
to complex variables. In doing this, we shall use the definitions 

2 tan-'[cot 0 tanh(cp + ix)] 

= (2 tan-'[cot 0 tanh(cp + ~ x ) I } ~ ~ ~  

+ (2 tan-'[cot 0 tanh(cp + i ~ ) ] } , i i ~ ~ ~ ~ t  ( 2 . 1 4 ~ )  
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(2 tan-'[cot 0 tanh(cp +ix)]}cont 

(2.14b) 

1 cosh 2cp -COS 2 ( 0 - ~ )  
= - In +tan-' [cot(@ -x) tanh cp] 2i cosh 2 9  -cos 2 ( 0 + x )  

+ tan-'[cot(@ +x) tanh cp] 

(2 tan-'[cot 0 tanh(cp + i ~ ) ] } d i ~ ~ ~ ~ t  

= ( ~ / 2 ) ( s g n  cp)[sgn(x - 0) + sgn(x - 0 + 7r) + sgn(-x - 0)  

+sgn(-x--0+7r)]. ( 2 . 1 4 ~ )  

(Here we understand that 0 < 0 < 7r, -7r < ,y s 7r and /tan-' 
It is easy to see that complex k define complex 77 with IIm 77 I < 7r while real k 

not falling in the region (0; 27r - 0) correspond to complex 77 with Im r] = 7r. As in 
any S' = 0 excited state some of the k are supposed not to satisfy (2.13), in order to 
find S' = 0 excitations one has to look for those solutions of equation (2.7) in which 
some of the 77 are complex with -7r < Im 77 s 7r. A usual way of treating states with 
complex 77 is to suppose that the complex r] are arranged in special configurations 
(the so-called strings) of the form 

77 :: = q + i(n + 1 - 2 k ) 0  + i( 7r/2)( 1 - Y) + O(exp( -N)) (2.15) 

S 7r/2 for real x.) 

(with 77; being real, Y can be + or -1, and k = 1,2,  . . . , n )  and to deduce equations 
for the centres of the strings i.e. for the 77:. Now we follow a different strategy: we 
do not make assumptions on the forms of the complex variables; instead we eliminate 
the real 7 from equation (2.7) to obtain a system which contains the parameters of 
the excitations i.e. the complex 77-set and the positions of the holes left behind in the 
real 7 distribution only. We shall find that the complex need not be of string form, 
moreover in the typical low-energy excited states the complex r] do not form longer 
than two-strings. Instead of the longer strings, other non string-type complex 77 
configurations can appear. 

3. Equations for the states with several complex q 

In this section we shall derive equations for the parameters characteristic for the states 
with complex 77. The complex 77 will be labelled by Latin indices n and m to distinguish 
them from the real 7 labelled by Greek indices. The real and imaginary parts of the 
77" will be denoted by cpn and xn respectively: q n  = cpn + ixn, The numbers 2nl, 2n2 and 
n3 will denote the numbers of complex 77 with 1x1 < 2 0 ,  2 0  < 1x1 < 7r and x = T,  

respectively. The total number of r] is r = N/2. 

3.1. Density of the real q 

It is convenient to write equation (2.7) for the real q in the form 

N 2  tan-'[cot(0/2) tanh(q,/2)] 

= 2 ~ 9 7 ;  +C 2 tan-'[cot 0 tanh(v, -77p)/2] 
P 

+ (2 tan-'[c@ 0 tanh(va - ~n)/2IIcont 
n 

(3.1) 
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where we introduced 

1 
9% = 9, +- 1 (2  tan-'[cot 0 tanh(q, - 77n)/2]}discont. ZIT n 

(3.2) 

The parity of the numbers 2 9 ;  is the same as that of the number N / 2 - n 3 -  1 .  It is 
not hard to show that equation (3.1) has a solution if all 9; are different and 
19hl<$(N/2+2n2+n3).  (The same proof can be adopted here which was used by 
Griffiths (1964) to show the existence of a solution for equations (2.4)-(2.5) for a A 
set: 0 CA,, A, + 2   SA,+^ CN.)  Also taking into account the restriction on the parities 
of the 2 9 ;  we find that for the 9; set we have to choose N / 2  -2nl - 2n2 - n3 different 
numbers from the set 

-&~/2+2n2+n3-1) ,  -$(N/2+2nz+n3-3) ,  . . . , 5 ( ~ / 2 + 2 n 2 + n 3 - 1 ) .  (3.3) 1 

Equation (3 .1)  defines real q (later on denoted by q h )  also for the 2nl +4n2+2n3 = H  
numbers left out of the set (3.3) (denoted by 9k) 

N 2  tan-'(cot(@/2) tanh q h / 2 )  = 2 1 ~ 9 ;  +I 2 tan-'[cot 0 tanh ( q h  - q a ) / 2 ]  
P 

+E (2  tan-'[cot 0 tanh(qh - qn)/2])cont. (3.4) 
n 

In the l a r g e 4  limit with the above choice of 9; equation (3.1) can be turned by 
standard methods into a linear integral equation for the density of q,, which, when 
solved by Fourier transformation, yields 

where ao(q) is the ground-state density given by (2 .11);  al(q) and az(q) the contribu- 
tions corresponding to the presence of the q h  and qn respectively are 

The function f ( w ,  0, x) is defined as 

sin 0 
cosh(rp +ix)-cos 0 f (w,  0, x) = sinh WIT - e-iwv dQ. 

(3 .7)  

We note here that a(q) of (3.5) can be regarded as the density of q, only if 
o ( q ) + ( l / N )  &,s(q - 7 h )  is positive for all q. This is true if the number of complex 
q is small compared with N (in this case a(q)  is dominated by ao(q)) but is not obvious 
if H is comparable to N (in which case ( T Z ( ~ )  may make a(q) negative). For this, 
for large H the positiveness of a ( q ) + ( l / N )  &,6(q-qh) must be checked for any 
given solution. 
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3.2. Equations for the complex 77 

Equation (2.7) for a complex 77 takes the form 

N 2  tan-'(cot(0/2) tanh 77,,/2) 

= 2n9" + 1 2 tan-'[cot 0 tanh(v, - 73P)/2] 
P 

+E 2 tan-'[cot 0 tanh(q,, - vm)/2]. 
m 

(3.9) 

Replacing the continuous part of the sum over the real 7 by an integral over the real 
77 with density (3.5) after some algebra we get 

N 2  tan-'[tanh(q,n/40)1 if lx,, I < 2 0  

N n  sgn (P,, if lx,l>2O 
= 2779,, I 

+ (2 tan-l[cot 0 tanh(q, - T P  )/2I)ciiscont 
4 

+ 1 2 tan-'[cot 0 tanh(q, - 77,)/2] 

+ {2 tan-'[cot 0 tanh(7, -77')/2]}co,,((+~(77f)+(+2(77f)) dv' .  (3.10) 

What is interesting in this equation is that the imaginary part of the LHS is proportional 
to N if Ixfl I < 2 0  but it is zero if 2 0  < Ix,, I s n. This means that in the first case equation 
(3.10) can only be satisfied if at the same time the RHS has an imaginary part of the 
order of N, that is, for an 77, with I X , , ~  < 2 0  there is another 77"' for which 

(3.11) 

m 

m 

I_, 

2 tan-'[cot 0 tanh(r],, - 77,,)/2] - N 

i.e. (see equation (2.146)) 

77, - 77"' = h i 2 0  * 26 (3.12) 

with 161 being exponentially small in N. As the term (3.11) also appears on the RHS 
of equation (3.10) for the r ln ,  (with a minus sign) it is also clear that Ixn,l<20. Thus 
we conclude that the set of complex 77, with lxnl < 2 0  must consist of pairs satisfying 
(3.12), that is pairs of the form 

77: = (P, + i(p, + 0)  + 6, 77, =pn+i (pn-0 ) -6 , ,  IwcLn/<O. (3.13) 

In connection with the above reasoning we have to note the following. One point is 
that equation (3.10) requires only that the 77, with J,yfll<20 have a partner with which 
(3.12) is satisfied, but does not impose restrictions on the forms of 77, with lxnl >2O. 
The other point is that if in (3.13) pn = 0, 77: and 7, are the complex conjugates of 
each other (Re 6, = 0) and they represent an ordinary two-string. If however p,, f 0, 
the 77: pair should be regarded as a two-string with a complex centre. Since each 71, 
should appear together with its complex conjugate (except for x,, = n) if p,, # 0 there 
must be another qz f  pair which has its centre at pn -ip, and the two 77: pairs form 
a quartet of the form 

77; =cPn+i(pf l+@)+6,  s i  =cPfl+i(pn-@)-Sn 
(3.14) 

77;' = pn +i(-p, + 0)  - 6: 77;' = p,, +i(-p,, - O) + 6:. 
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Later on it will be convenient to represent the q, set by a set of auxiliary variables 

(i) One complex q pair q: of the form of (3.13) is represented by a single &,: 
Ijl, which are defined as follows. 

((ln = q n  +iFn l p n I < @ *  (3.15) 

(ii) A complex qn with Ixn I > 2 0  is represented by a 4, of the form 

dJn = Qn +ipn p n  = Xn -0 sgn Xn (3.16) 

The 4, set consists of real numbers, complex conjugate pairs with 0 C IIm I//,, I < IT - 0 
and complex numbers with Im Ij/, = IT - 0. The total number of the 9, is n1+ 2n2 + n3 = 
H/2, that is half of the number of holes in the real q distribution. 

The equation for a IC/, with lpnl C 0 can be obtained by summing up equation (3.10) 
for the corresponding 7: and 7; .  Doing so, the large terms of the two equations 
cancel each other and in the remaining part the S can be neglected (see also the 
appendix). The equations for the with lpn I > 2 0  are obtained simply by rearranging 
the terms in equation (3.13) for the corresponding qn and neglecting the exponentially 
small S .  As a result, we get for all 

0 < Ixn I s IT - 0. 

H 

h = l  
1 2 tan-’[cot(@’/2) tanh(4L - 17 k)/2] 

H/ 2 

m = l  
= 2 1 ~ 9 ;  + C 2 tan-’[cot 0’ tanh($; - $A)/2]. 

Here we used the notations 

(3.17) 

(3.18) 

The SL parameters are obtained by collecting the terms of the form n r .  Their 
connections with the original 9,, are 

9L=9:+9,-iNsgncpn+4 sgn(qn-rp,) if IpLIc0’ 
m # n  

g‘ n =g n -1 2~ sgn pn +$E sgn(cpn - q p ) + $ C  sgn(pn - 7 h )  

P h 

+4 C sgn(cpn-pm) if IpLI>@’. 
lwAl<@’ 

The parity of the numbers 2 9 ;  is the same as that of H/2 - 1. 

(3.19) 

3.3. Equations for the variables v h  

The equation for the 
the q5 on the RHS by an integral over the q with density ( ~ ( 7 ) .  This way one gets 

N 2  tan-’[tanh(q1,1~/4@’)] = 21~9;  - 1 q5 (7 k - q k r )  

is obtained from equation (3.4) by replacing the sum over 

n‘  

+I 2 tan-’[cot(@’/2) tanh(q1, -+;)/2] 
n 

(3.20) 
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where 

elwx 
d o  sinh w (T - 0‘) 
io 2 sinh un- cosh WO’ 

and 

(3.21j 

The 9[ parameters are integers if N/2 is odd and half odd-integers if N/2 is even. 

3.4. Remarks in connection with the system (3.17), (3.20) 

By solving the system (3.17) and (3.20) one can construct the solution of the original 
equation (2.7): if the $, are given according to (3.13), (3.15)-(3.16) the complex 77 
can be calculated (up to exponentially small terms) and knowing also the qh through 
equations (3.5)-(3.7) the density of qm can be determined too. The q set obtained 
this way satisfies equation (2.7) if both the 6, are small (see appendix) and the 
~ ( q )  + ( l / N )  Ch S ( q  - qh) is positive (see the paragraph after (3.8)). 

The system (3.17), (3.20) can also be used to calculate the excited states of an 
isotropic ( p  = 1) Heisenberg chain simply by taking the 0 + 0  limit. In this limit all 
7 (except those with Im 7 : = T )  disappear proportionally to 0 while tlie v/@ 
(+cot(k/2)) ratios remain finite From the complex 7 with Im 77 = T only the ,discont‘ 
parts of the tan-’ functions remain. It is not hard to check that this prcced>dre leads 
to the same equations as the procedure described in §§ 3.1-3.3 applied d‘rectly on 
the secular equations of the isotropic Heisenberg chain. 

As has been mentioned in 9 2 the s.ual approach to describe state!: with complex 
wavenumbers is to look for string solutions (see (2.15)). It is not hard LO see that 
the 4; parameters representing the T,-set of a string should also form a string (but a 
shorter one and with a spacing in the imaginary direction 20’). Equation (3.171, 
however, has string solutions only if H is sufficiently large. Otherwise there is no 
reason for having terms with large imaginary parts on the RHS and there is no restriction 
on the imaginary parts of the 4;. Thus the typical complex 7 configurations for small 
H are the ordinary two-strings (real &), quartets of the form q n * i ( ~ , ,  *a) 
(IIm $;I < 0’) complex 7 pairs with IIm q n /  > 2 0  (IIm >e’) and complex 7, with 
Im q, = 7r (Im $,, = n-). It is also worth noting that changing the positions of the q h  

one of these complex 7 configurations can go over into another one continuously, 
thus we cannot prefix the positions of the holes in the real distribution and the 
types of the complex q configurations independently. 

The results concerning the complex q not forming strings seem to be in contradic- 
tion with the findings of Fowler and Zotos (1981) and Hida (1981). In both papers 
it is argued that the normalisability of the wavefunction requires the complex 7 to 
form strings. In principle, in both papers the arguments concerned infinitely long 
chains with a finite number of turned down spins. Now we are dealing with long but 
finite chains with a periodic boundary condition which is built in in equation (2.7). 
Thus all the solutions of equation (2.7) should give normalisable wavefunctions. 

3.5. Energy and momentum of the states with complex q 

The energy is calculated according to the formula (2.8). Evaluating the contribution 
of the real q by means of a(q)  it turns out that the contribution of the complex 7 
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drops out and only the contribution of the holes remains 

(3.23) 

The momentum using (2.9), (3.2), (3.3), (3.17), (3.19), (3.20) and (3.22) is 

p = - 1 p h  +I I T ( I  -sgn qn)+&n. (3.24) 
h n 

with 
o <Ph = ;IT - 2 tan-'[tanh(qh1~/40)] < IT 

which compared with (3.23) yields 

IT sin 0 
E -Eo= - -sin ph h 2  @ 

p - PO = 1 - ph (mod 27r). 
h 

(3.25) 

(3.26) 

The fact that the energy-momentum dispersion contains explicitly only the positions 
of the holes in the real q distribution suggests that these states should be classified 
according to the number of holes, rather than according to the number of complex 
q. This is in accordance with the fact that at fixed H changing the positions of 
may cause changes in the number of qn (one IIm $'I crossing 0' changes the number 
of qn by two). 

4. The simplest excited states 

4.1. States with two holes in the real q distribution 

For H = 2 there is only one 4'. For this, Im 4' is either zero or IT. In both cases 
equation (3.17) (with 9' = 0) yields 

Re $'= (qLl +qL2)/2 = Q'. (4.1) 

If Im 4' = 0, (4.1) corresponds to a complex q and k pair 

q* = %ml + q h 2 )  * io 
(4.2) 

i coshrp-1 
2 cosh Q -COS 2 0  

k*=$.rr(2-sgn cp)-tan-'(cot 0 tanhcp/2)*-ln 

while for Im 4' = IT the corresponding complex q and real k are 

9 = $qh1 + qh2)  + i a  k =  IT(^ -sgn c p )  -tan-'(tan(0/2).tanh ~ / 2 ) .  (4.3) 

With Re 4' given by (4.1), equation (3.20) can be solved numerically for q h l  and q h z  

if 5FLl and $L2 are two different (Im tjl' = 0) or two different or equal (Im 4' = IT) 

numbers between *(N/2)(N/2 - 1). The numbers of different solutions are (N/2) x 
(N/2 - 1)/2 and (N/2)(N/2 + 1)/2, respectively. Both classes of the above states have 
an energy-momentum dispeision 

E = = ilr(sin @/@)(sin ph1 +sin ph2) .  (4.4) 
The solutions of equation (3.17) described above correspond to the lowest-energy 

S" = 0 excited states described by Johnson et a1 (1973). It is worth noting that taking 
the p + 1 (0 + 0) isotropic limit, the states corresponding to (4.2) go over into the 
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singlet states with one complex k pair, while the limiting states corresponding to (4.3) 
are the simplest S‘ = 0 triplet states (Yamada 1969). In the p + 0 (0 -+ 77/2) planar 
limit the states characterised by p1 and p 2  of both classes go over into different linear 
combinations of the states which are obtained by filling in all modes between 77/2 
and 37712, and exciting one particle from the mode 7712 + p l  to 7712 - p 2  and vice versa. 
This solves the apparent contradiction, that Im k’ in (4.2) does not vanish even if 
the ‘interaction part’ from the Hamiltonian is absent. 

4.2. The states with four holes in the real 7 distribution 

For H = 4 the number of 4’ is two. Although equation (3.17) can also be solved 
analytically in this case, since the results are less transparent, we just give an account 
of the different solutions. To any given set of the four Vh, equation (3.17) has six 
different solutions which generate solutions for equation (2.7), and these solutions 
can be grouped into the following four classes: 

(i) a real 4’ pair; 
(ii) three different 4‘ pairs; in each pair one Im 4’ is zero, the other is T ;  

(iii) a 4’ pair, with both Im 4‘ = 77; 

(iv) a 4’ pair, which, depending on the actual values of the q h ,  can either be real 
or complex and for which 0 s IIm 4’1 < 7712 if 0’ < 7712, and 7712 < IIm 4’1 s 77 if 7712 < 
0’<77. 

In all four classes the 9’ are continuous functions of the 7 h .  Solutions belonging 
to the first three classes generate states with two two-strings, states with one two-string 
and a real k outside (0; 277 -e), and states with two real k outside (0; 2 ~ - 0 ) ,  
respectively. The states belonging to class (iv) appeared instead of the states with one 
three-string (also a three-string would require four holes in the real 7 distribution), 
and depending on the four momenta ( 7 h )  they can be states with either two two-strings 
or with one quartet (see (3.14)) or with a single complex k pair not forming a two-string 
if 0 < ~ / 3 ,  and they can be states with either one quartet or with a complex k pair 
not forming a two-string, or states with two real k outside the interval (0; 277 - 0) if 
77/3 < 0 < 77/2. For all four classes the energy-momentum dispersion is 

v s i n 0  
E-Eo= 1 --sinph 

h=12 @ (4.5) 

thus (4.5) is six-fold degenerated. 
In the p + 1 isotropic limit the states of classes (i) and (iv) go over into singlet 

ones, while the states belonging to classes (ii) and (iii) are S‘ = 0 triplet and S’ = 0, 
S 2 = 6  ones respectively. In the planar limit the states of all four classes go over 
into (two-particles, two-holes)-like states. 

5. Summary 

In the present work we have studied the S‘ = 0 excited states of the anisotropic 
antiferromagnetic Heisenberg chain for values of the anisotropy parameter 0 s p 6 1. 
Our study has been based on the secular equations for the problem (equation (2.7)). 

It has been argued that to describe the S‘ = 0 excitations complex 7) parameters 
should be introduced. From the original equation (2.7) a simpler system (equations 
(2.171, (3.20)) has been deduced. This system contains only the variables characteristic 
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for the excitations: a set of auxiliary variables which represents the set of complex 7 
and the positions of the holes in the real 7 distribution. The energy-momentum 
dispersion is also determined. It does not depend explicitly on the number and the 
distribution of the complex 7 but the positions of the holes: p = ( -PI , ) ;  E -EO = 
&, (7r/2)(sin @/e) sin p h ,  where the P h  momenta are determined by the holes only 
(equation (3.25)). 

It has been a general opinion, that the complex 7 obtainable as solutions of the 
secular equations (2.7) should form strings. A simple argument based on the form 
of equation (3.17) shows, however, that string solutions, except the two-string ones, 
can exist only if the number of holes in the real q distribution is sufficiently large. If 
the number of holes is small, longer strings do not exist, and the typical complex 7 
configurations are the two-strings, quartets of the form cp f ip  f i 0  (IF 1 < e), complex 
q pairs with IIm ql > 2 0  and complex 7 with Im 7 = 7r. 

Solutions of equations (3.17), (3.20) for the simplest excited states are described. 
If the number of holes is two, two classes of solutions exist. The first corresponds to 
states with one two-string, while the second corresponds to states with one real k 
outside (0; 27r - 0). The excited states with four holes in the real 77 distribution can 
be grouped into four classes: the first three classes are given by the states with two 
two-strings, one two-string and one real k outside (0; 27r - O), and two real k outside 
(0; 277 - O), respectively. States falling into the fourth class are, depending on the 
momenta, states with either two two-strings, or one quartet, or a complex k pair not 
forming a two-string, or states with two real k not falling in the region (0; 27r - 0). 
The energy-momentum dispersion for the states with two holes are two-fold, while 
for the states with four holes are six-fold degenerated. 
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Appendix. Equations for the S 

When deriving equations for the (Ln the S, (see (3.13)) have been neglected. Thus the 
consistency of the whole treatment requires that the 8, are indeed small. This can be 
checked after writing the equations for the 8,. 

Taking equation (3.10) for q: and q i  and subtracting one from the other leads 
to the equation 

2NUtan-'{tanh[$((Ln + i0)7r/20]} - tan-'(tanh[$((L,, - iO)~/2O]}% - 2 4 s  - 95) 

+ 

- tan-'[cot(0'/2) tanh $(4L -I&, +io')]} 

2(tan-'[cot(0'/2) tanh a((Lk - 4 k  -io')] 
m # n  

sinh2 w (7r - 20)  sinh w 0 dw 
+2 I, sinh w7r sinh w (7r - 0) iw 

- 

= 4 tan-'[cot 0 tanh(i0 + S,)]. 
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If the I,6, (4;) and vh are given, with an appropriate choice of the number 9; -9, 
(Al) can be solved for 8,. Note, that for the sake of consistency, the parity of the 
number Si - S, must be the same as that of N / 2  - 1 + 9; + 9,. With this restriction 
both the choice of S: - 9, and the solution for S, is unique. 

The modulus of S, is determined by the imaginary part of equation (Al). If we 
have a small number of excitations (H<< N) then the imaginary part of the LHS is 
dominated by that of the first term, which is negative and proportional to N, meaning 
that (S,I is indeed exponentially small in N. If, however, H is comparable to N, the 
other terms can also contribute significantly. In this case the smallness of the 8, must 
be checked for each solution of equations (3.17), (3.20). 
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